

NSF Panel on Light Source Facilities AMO Physics Applications: a fruitful partnership

Philip Bucksbaum Stanford

Wednesday, January 10, 2008

Resources on AMO Research in 2010 and Beyond

Controlling

- AMO 2010: Controlling the Quantum World
 - National Academy decadal survey

- Controlling Matter and Energy: Five Challenges for Science and the Imagination
 - Report from the Basic Energy Sciences Advisory Committee (BESAC)

Frontier areas of AMO

- High precision clocks the precision time frontier.
- Imaging quantum processes on ultrafast time scales – the attoscience frontier
- Coherent molecular dynamics the quantum control frontier
- Quantum computing and quantum communication: the quantum information frontier
- Atomic physics in exotic environments: the high field and high energy density frontiers
- Ultralow temperature phenomena: the frontier of quantum degenerate atomic gases

Areas that make use of light source facilities

- High precision clocks the precision time frontier.
- Imaging quantum processes on ultrafast time scales – the attoscience frontier
- Coherent molecular dynamics the quantum control frontier

 Atomic physics in exotic environments: the high field and high energy density frontiers

The facilities of interest for AMO frontier physics

Smaller centers also contribute petawatt lasers for collaborative use (Texas Petawatt, FOCUS)

Atomic Clocks

From military navigation to fundamental physics, atomic clocks are central.

Atomic clock in a 1 mm³ volume

U.S. primary frequency standard: Cs atomic fountain clock, accurate to 5 X 10⁻¹⁶ or 1 second in 60 million years

Optical frequency standards (Nobel '05) are the future of atomic clocks

Connection I: Precision VUV Metrology PULSE

Jones et al. PRL 94, 193201 (2005)

Applications:

Precision vuv atomic spectroscopy

Optical time standard

Time variations of fundamental processes

Connection II: Attosecond precision to tame the SASE FEL

- Laser peak power ~ 10 GW
- Wiggler with ~ 10 periods
- P. Emma, W. Fawley, Z. Huang, S. Reiche, G. Stupakov, A. Zholents

The output x-ray radiation from a single micro-bunch

- Each spike is nearly temporally coherent and Fourier transform limited
- Carrier phase for an x-ray wave is random from spike to spike, but HGHG injection schemes could overcome this
- Pulses less than 100 attoseconds may be possible with 800 nm laser

High Field Frontier: Changing Strong Field Regimes Inside Atoms

$$\Gamma_{e-A+} < \omega_{laser}$$
 $U_P << \hbar \omega_{laser}$
 $\Gamma_{e-A+} \approx \Gamma_{2e-A++}$?
sequential vs.
non - sequential

$$\Gamma_{e-A+} << \omega_{laser}$$
 $U_P << \hbar \omega_{laser}$
 $\Gamma_{e-A+} \approx \Gamma_{Auger}, \Gamma_{2e-A++}$
Hollow atoms?

Laser Power Beyond a Petawatt can access Relativistic Strong Field Physics

Relativistic photoionization and rescattering of photoelectrons and ions

Can the LCLS get to its own type of strong-field regime?

impose a Keldysh parameter of one

$$\gamma \equiv 1 = (I_p/2U_p)^{1/2} \Rightarrow U_p \cong 400 \text{ eV} (8 \text{ eV})$$

@ 800 eV, intensity needed is 10²¹ W/cm² (10¹⁴ W/cm²)

number of photons is fixed, require tighter focus and shorter pulse

 $\tau_{lcls} \sim 10 \text{ fs } (very possible)$

thus require a beam waist of 50 nm (in principle possible)

Strong field wavelength scaling:

Keldysh picture

data compiled based on both electron and ion experiments

Physics comes from inner shells

laser multiphoton ionization

x-ray multiphoton ionization

x-ray strong field experiment

x-ray multiphoton ionization

1-photon, 1-electron ionization

consider a 1-photon K-shell transition:

$$\begin{split} \sigma_{\text{K}} &\approx 10^{\text{-}18} \text{ cm}^2 \\ \Gamma_{\text{K}} &= \sigma_{\text{K}} F_{\text{lcls}} \approx 10^{\text{15}} \text{ s}^{\text{-}1} \\ t_{\text{K}} &= \text{1/} \Gamma_{\text{K}} = \text{1 fs} \end{split}$$
 (saturated)

- rapid enough to ionize more than one electron!
- fast enough to compete with atomic relaxation?

2-photon, 2-electron ionization

- are the electrons correlated?
- in a strong optical field single electron dynamics dominate.

i.e. is it sequential ionization?

Coherent effects?

 3d generation x-ray sources have << 1 photon per mode; LCLS will have coherence "spikes" containing a billion photons or more, in ~femtoseconds! What about coherent excitation?

Rabi rate $\Omega \approx \mu F_0$

$$\mu = \langle f | ex | i \rangle \approx E_{binding}^{-1} \approx 0.01 \text{ for 1 keV}$$

$$F_0 \approx 1$$
 then implies $\Omega^{-1} \approx 2.5$ fsec

Attosecond pump-probe?

fundamental time scale electron dynamics Atomic time unit = 24 attoseconds

Direct attosecond probe of atomic electron correlation Hu and Collins, PRL (2006)

Theory

Observing the inner workings of an atom:

Auger dynamics

- Dynamics driven by electron correlation effects
- Time-scale important in atoms, molecules, nano-particles (i.e. multiple-exciton generation)
- Attosecond pumpprobe expts proposed for NGLS (Berkeley workshop, 2007)

The competition for attoscience: HHG, a source of controllable vuv radiation

HHG mecanism involves rescattering, and so is limited to the atomic scale

Imaging the Inner Workings of a Molecule

A snapshot image of a molecule obtained from field ionization and electron-molecule recollision Can we get this degree of control with radiation from a facility?

Diffraction imaging with x-rays at LCLS PULSE

Exploding T4 Lysozyme: Short pulses and high power are essential

1x10¹¹W/cm² irradiation for 200 fs by LCLS pulse in 1mm spot (unfocused)

A 3D dataset can be assembled from diffraction patterns in unknown orientations

Beyond imaging: Controlling quantum evolution

tools for control

Total field control

- -Ultrafast studies (1999 Nobel)
- -Carrier envelope phase control (2005 Nobel)
- -Pulse shapers

Learning feedback

Ultrafast vuv control will involve extreme non-Born-Oppenheimer dynamics

Launch dynamics on multiple potential energy surfaces

Create electronic wavepacket: superposition on several electronic surfaces

Partnership: Light sources will contribute richly to AMO Science...

...and AMO will contribute techniques and technology to utilize these sources for science.

Thanks to...

- Lou DiMauro
- Linda Young
- Markus Guehr
- Bill McCurdy
- Joe Stohr
- Janos Hajdu
- Many others...